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Abstract

The infinitesimal symmetries of a fully decomposed non-Abelian gerbe can be generated in terms of a nilpotent BRST operator,
which is here constructed. The appearing fields find a natural interpretation in terms of the universal gerbe, a generalisation of
the universal bundle. We comment on the construction of observables in the arising Topological Quantum Field Theory. It is also
shown how the BRST operator and the trace part of a suitably truncated set of fields on the non-Abelian gerbe reduce directly to
the coboundary operator and the pertinent cochains of the underlying Čech–de Rham complex.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The natural generalisation of a principal bundle is a non-Abelian gerbe [1]. There are different ways of defining
such an object. In this paper we shall make use of the very general approach of Ref. [2] based on category theory [3].
Other approaches include [4,5]. Generalisations of Yang–Mills theory have been discussed generally e.g. in [6,7]. Non-
Abelian two-forms and their uses in loop space have been approached e.g. in [8–10]. An example in Supergravity can
be found in [11]. Gerbes have appeared in String Theory e.g. in [12–17], in M-theory in [18–20], and in a slightly
different incarnation in Quantum Field Theory in e.g. [21].

The aim of the paper is to define a nilpotent BRST operator on non-Abelian gerbes and to develop methods for
using non-Abelian gerbes in path integral quantisation of geometrically defined field theories. From the String Theory
point of view the emphasis is on the discussion of semiclassical backgrounds rather than defining stringy holonomies.
As is usual in Physics, we study the geometric object through fields that live on it: in the case of a principal bundle we
might equip it with a connection so that representatives of its characteristic classes can be studied conveniently. In the
case of a non-Abelian gerbe we need much more data. The requisite objects were found in [2] making use of recently
developed methods in combinatorial differential geometry [22].

We shall first cast some of the results of [2] in a form which is perhaps more immediately applicable in physical
problems. In particular, we define the BRST operator of a non-Abelian gerbe as a nilpotent Grassmann odd operator
that generates its infinitesimal symmetries. Instrumental to the construction is the universal gerbe which arises as
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a generalisation of the universal bundle [23]. The BRST operator can be discovered as a covariant derivative on it.
Universal gerbes in a slightly different context were discussed also in [24]. As the BRST operator implements a shift
symmetry, it leads to a topological theory, akin to the standard Topological Yang–Mills theory [25,26]. Topological
Quantum Field Theory with Abelian gerbes was also discussed more abstractly for instance in [27].

The method of choice for describing the structure of a fully decomposed gerbe is combinatorial differential
geometry [22]. This is perhaps unfamiliar in the physics literature; a brief and informal review of the basic tools
is included in Section 2. Most of the discussion is on the algebraic level, and we use heuristic methods, such as path
integrals, only to motivate definitions. To give a flavour of the novelties, the requisite tool-kit contains, among other
things, three different “derivatives”:

• the classical Lie-algebra valued covariant exterior derivative dA that acts on Lie-algebra valued differential forms;

• the combinatorial differentials δ
(n)
m that act on group-valued differential forms; and

• the generalisation of the Čech coboundary operator, ∂λ.

These differentials depend characteristically on different data: here A is a locally defined Lie-algebra valued one-
form, m a combinatorial Lie-group valued one-form, and λ, in the simplest case, an element of the automorphism
group of the underlying Lie-group.

In Section 3 the infinitesimal symmetries of a fully decomposed gerbe are found, and a provisional BRST operator
Q is written down. This provisional operator fails to be nilpotent, however, when operated on one of the ghost fields.

Section 4 is a review of the universal bundle, and its uses for defining observables in Donaldson–Witten theory. In
Section 5 we generalise the construction for the non-Abelian gerbe, and write down a fully nilpotent BRST operator q
for the associated Topological Quantum Field Theory. In Section 6 we change the grading of the BRST operator, and
show that the new operator q̄ reduces to Q on-shell.

In Section 7 we discuss defining BRST-closed functionals. Due to the intricate structure of the field content, the
simplest such functionals are also BRST-exact and therefore trivial in BRST cohomology. The complications that arise
in defining invariant polynomials are intimately related to the rôle played by the outer automorphisms of the underlying
gauge symmetry group. It remains an interesting problem to calculate the cohomology of the BRST operator. We finish
by showing how the trace part of the present construction produces the Abelian gerbe [28], and its symmetries.

2. Structure of a non-Abelian gerbe

In this section we set the stage for later constructions. We shall first recall the basic group theoretical structures
behind a non-Abelian gerbe [29,3], then review aspects of differential calculus with group-valued forms [22], and
finally summarise in Section 2.3 the differential geometry of a fully decomposed gerbe [2].

2.1. Cohomology of a gerbe

We give here a brief account of cohomology of gerbes. Note that this cohomology is not related a priori to the
cohomology of the BRST operator that is the main topic of this paper.

In the Abelian case, the cohomology class of a gerbe with connection and curving is a class in Čech–de Rham
cohomology [28]. This generalises readily to arbitrary degree. There is a well-defined characteristic class, which for
an n-gerbe on a manifold X is an element of Hn+2(X, R).

In the non-Abelian case the situation is directly analogous only at degree one: the cohomology class of a principal
G-bundle – seen as a zero-gerbe – is an element of H1(X, G). The definition makes sense, as the cocycle condition
λi jλ jkλki = 1i is invariant under redefinitions of the local frame λi j −→ hiλi j h

−1
j . When the principal bundle is

equipped with a connection, characteristic classes can be defined as elements of H∗(X, R) e.g. in terms of invariant
polynomials of the curvature of the connection.

For a one-gerbe, the cocycle condition involves both the automorphism-valued transition function λi j ∈

Hom(G j , Gi ) and the group-valued generalisation gi jk ∈ Gi of the Abelian Čech-cocycle

λi j (g jkl)gi jl = gi jk gikl (1)

ιgi jk λik = λi jλ jk . (2)
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The groups Gi could be the same group on each chart Ui , in which case the structure is called a G-gerbe. In what
follows we concentrate in the interest of notational simplicity on this case although the analysis goes directly over to
the general {Gi }-gerbe. In any case, the automorphisms λi j are required to be invertible.

The cohomology of a non-Abelian G-gerbe involves, therefore, both the group G and the automorphisms Aut G.
Inner automorphisms Int G are given by conjugation with a group element; outer automorphisms are the rest

Out G := Aut G/Int G. (3)

For a connected, simply connected simple Lie-group G, Out G is given by the symmetries of the Dynkin diagram.
Together with the centre of the group ZG all these groups fit in the exact sequence

1 −→ ZG −→ G
ι

−→ Aut G
σ

−→ Out G −→ 1, (4)

and in the commutative diagram

1 −−−−→ ZG −−−−→ G −−−−→ Int G −−−−→ 1

ι

y y y
1 −−−−→ 1 −−−−→ Aut G Aut G −−−−→ 1

. (5)

It turns out to be useful to look upon this as a sequence of complexes (ZG −→ 1), (G
ι

−→ Aut G), and
(Int G −→ Aut G). The last column is by (3) equivalent to Out G, and the essence of these diagrams can be boiled
down to the “distinguished triangle” [3]

ZG[1] −→ (G
ι

−→ Aut G) −→ Out G, (6)

where “[1]” indicates the shift in degree.
More technically this can be summarised by saying that the cohomology class (λi j , gi jk) of a non-Abelian G-gerbe

is valued in the crossed module G
ι

−→ Aut G, denoted here with G. The group H1(X, G) of equivalence classes of
such gerbes fits in the exact sequence [29]

H0(X, Out G) −→ H2(X, ZG) −→ H1(X, G) −→ Tors (Out G), (7)

where Tors H refers to isomorphism classes of principal H -bundles. The shift in the degree is due to the fact that G is
a complex. Therefore, if there are no outer automorphisms, the gerbe G is cohomologically an Abelian ZG-gerbe.

2.2. Group-valued differential forms

In this section we review informally basic techniques for calculating with group-valued differential forms needed
later in the paper. For a more systematic account, see [22,2].

Let Ω∗(X, G) denote the sheaf1 of group G-valued local differential forms on X relative to a fixed cover {Ui } of
X . To be quite concrete, a typical element in it is a rank-n combinatorial differential form αi1···ik in Ωn(Ui1···ik , Gi1)

defined on the k-fold intersection Ui1···ik with coefficients in the local group Gi1 . This generalises the Čech–de Rham
complex in a natural way. In what follows there is no need to indicate explicitly what the local group Gi1 is, because
it is implicit in the first index of the intersection, i1: in lieu of Gi1 we write simply G.

Let g, h ∈ Ω∗(X, G) and µ, ν, λ ∈ Ω∗(X, Aut (G)). The group commutator for G and Aut G-valued fields is
defined as

[g, h] := ghg−1h−1, (8)

and similarly for Aut G. When the degree of both fields is positive, the group commutator reduces (on the level of
one-jets cf. [22]) to the classical Lie-bracket

[g, h] = gh − hg. (9)

1 For a precise definition see [22].
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This is simply because on the level of one-jets g = 1 + x +O2 and h = 1 + y +O2 so that [g, h] = xy − yx +O3.
In combinatorial differential calculus it is unnecessary to distinguish notationally between, for instance, g and x , and
we shall indeed change the point of view from the group level to the algebra level as suitable.

The action of elements µ of Ω∗(X, Aut (G)) on those of g ∈ Ω∗(X, G) is denoted as µ(g). Their commutator is
defined as

[µ, g] := µ(g)g−1
∈ Ω∗(X, G), (10)

which on the one-jet level Ω∗(X, Lie (G)) reduces for positive degree fields to the classical (graded) Lie bracket. One
can also define the bracket

[g, µ] := −[µ, g], (11)

which is still group-valued. When the degree of both fields is again positive, it too reduces to classical Lie brackets.
All of these classical Lie-brackets, be their arguments A, B, C Lie G or Lie Aut G-valued differential forms, obey

the usual graded classical Jacobi identity,

(−)|A||C |
[A, [B, C]] + (−)|C ||B|

[C, [A, B]] + (−)|B||A|
[B, [C, A]] = 0 (12)

as well as the Leibnitz rule

dm[A, B] = [dm A, B] + (−)|A|
[A, dm B], (13)

where |A| is the degree of A etc., and dm is a classical covariant derivative

dm := d + [m, · ]. (14)

Definiton 2.1. The adjoint action ι : G −→ Aut (G) is

ιg(h) := ghg−1. (15)

The automorphism group Aut G acts on itself by

λν := λνλ−1. (16)

Lemma 1. Adjoint action ιg by a group element g ∈ G enjoys the properties

[g, h] = [ιg, h] (17)

λιg = ιλ(g) (18)

[λ, ιg] = ι[λ,g] (19)

where λ ∈ Aut G and h ∈ G.

Proof. First, definition of the commutators [g, h] = ghg−1h−1
= ιg(h) h−1

= [ιg, h]; second, elements of Aut (G)

are homomorphisms and λµ = λµλ−1; third, [λ, ιg](h) = λ(g) g−1hg λ(g)−1
= [λ, g]h[λ, g]

−1. �

The combinatorial covariant derivatives

δ(n)
m : Ωn(X, G) −→ Ωn+1(X, G), n ≥ 0 (20)

reduce to the classical covariant derivatives

δ(n)
m ω = dω + [m, ω] = dmω, n ≥ 2 (21)

δ(1)
m ω = dmω +

1
2
[ω, ω], (22)

except for n = 0. Note that δ
(n+1)
m δ

(n)
m ω = [κ(m), ω] for n = 0 and n ≥ 2 with

κ(m) = dm +
1
2
[m, m], (23)
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Table 1
The local fields on a non-Abelian gerbe

0-form 1-form 2-form 3-form

G gi jk γi j Bi , δi j ωi
Aut(G) λi j mi νi

whereas for n = 1 we have

δ(2)
m δ(1)

m ω = [κ(m) + dmω, ω]. (24)

Also

δ(1)
m (−ω) = −δ(1)

m ω + [ω, ω]. (25)

There is an alternative set of differentials

δ̃(n)
m ω := −δ(n)

m (−ω) (26)

which of course coincides with the δ
(n)
m for n ≥ 2. The analogue of the Čech differential is

∂λωi j := ωi j + λi j (ω jk) + λi jλ jk(ωki ). (27)

2.3. A fully decomposed gerbe

The differential geometry of a non-Abelian gerbe [2] involves the fields summarised in Table 1. The cocycle data
(λi j , gi jk) satisfies

λi j (g jkl)gi jl = gi jk gikl (28)

ιgi jk λik = λi jλ jk . (29)

We add to this the connection mi and the two-form Bi and define

ωi := dmi (Bi ) (30)

νi := κ(mi ) − ιBi . (31)

The covariant derivative is the standard dm B := dB + [m, B] with curvature κ(m) := dm +
1
2 [m, m]. It is

compatible with the inner action ι in the sense that ιdm (B) = dm ιB . Note also that we will use this definition inherited
from Lie-algebra valued differential forms everywhere, including in the case of one-forms where Refs. [22,2] use2

δ1
m(γ ) := dmγ +

1
2 [γ, γ ]m .

To relate these fields mi and Bi on different charts, we need γi j and δi j such that

λi j ∗m j −mi = −ιγi j (32)

λi j (B j ) − Bi = δi j − dmi (γi j ) +
1
2
[γi j , γi j ]mi . (33)

The star in the action of λi j here refers to the fact that mi transforms as a gauge field
λi j ∗m j :=

λi j m j +λi j dλi j
−1.

We can view (33) as a definition of the G-valued two-form δi j

δi j := λi j (B j ) − Bi + dmi (γi j ) −
1
2
[γi j , γi j ]mi , (34)

2 The factor of 1/2 is crucial: this definition together with the result (6.1.19) of [2]δ1(−γi j ) = −δ1(γi j ) + [γi j , γi j ] can be used to turn the

cocycle condition (6.1.18) of [2] δ1(−γi j ) = −dmi (γi j ) + (1 −
1
2 )[γi j , γi j ]mi into the form required here in Eq. (34).
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whereas (32) determines only the inner action of γi j . Note that the twisted commutators [γi j , γi j ]mi are actually
independent of the twisting one-form mi , cf. (A.1.23) of [2], so we can treat them safely as standard untwisted
commutators. This leads [2] to the cocycle conditions

∂λi j (γi j ) = d̃mi (gi jk) (35)

∂λi j (δi j ) = [νi , gi jk]. (36)

The covariant derivative of group-valued functions d̃mi (gi jk) cannot be easily represented in terms of algebra-valued
expressions.3

We call the triple (mi , γi j , Bi ) connection data. Here δi j and νi belong to the curvature triple (νi , δi j , ωi ). The
cocycle conditions and the transformation properties of the curvature triple are in addition to the above equations

ιωi = −dmi (νi ) (37)

dmi (ωi ) = [νi , Bi ] (38)
λi j

ν j −νi = −ιδi j (39)

λi j (ω j ) − ωi = dmi (δi j ) + [γi j , νi ] − [γi j , δi j ]. (40)

One of the consequences of these cocycle conditions is the fact that if the fake curvature νi vanishes, then by (37) and
(39) the rest of the curvature data are Abelian.

2.4. Exact symmetries

The freedom to choose a basis in each chart Ui of the manifold gives rise to the local gauge symmetry: given local
functions hi ∈ Ω0(Ui , Aut (Gi )) we may change the basis by

mi −→
hi ∗mi := hi dmi (h

−1
i ) (41)

γi j −→ hi (γi j ) (42)

Bi −→ hi (Bi ) (43)

and so on. Under these symmetries the cocycle conditions transform obviously covariantly. Connection data deserves
its name because it can be shifted by affine data (πi , ηi j , αi , Ei ) that satisfy the cocycle conditions [2]

λi j
π j −πi = −ιηi j (44)

∂λi j (ηi j ) = [πi , gi jk]. (45)

The transformation rules of the connection data are

m′

i − mi = πi + ιEi (46)

γ ′

i j − γi j = ηi j − λi j (E j ) + Ei (47)

B ′

i − Bi = αi + κ(Ei ) + [mi , Ei ] + [πi , Ei ]. (48)

This induces the following symmetry on the curvature triple:

ν′

i − νi = κ(πi ) + [mi , πi ] − ιαi (49)

δ′

i j − δi j = λi j (α j ) − αi + dmi (ηi j ) − [ηi j , ηi j ]mi

+ [πi , ηi j ]mi − [γi j , ηi j ]mi + [γi j , πi ]mi (50)

ω′

i − ωi = dαi + [mi , αi ] + [πi , Bi + αi ]

− [αi , Ei ] + [νi + κ(πi ) + [mi , πi ], Ei ]. (51)

3 The notation of [2] used δ̃0(gi jk ) =
g
δ0

mi
(gi jk ) = d̃mi (gi jk ).
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We call this symmetry the affine gauge symmetry. The affine data are themselves subject to the symmetry

π ′
− π = ιρi (52)

η′

i j − ηi j = ρi − λi j (ρi ) (53)

E ′

i − Ei = −ρi (54)

α′

i − αi = κ(ρi ) + [mi , ρi ] + [πi , ρi ]. (55)

We call this redundancy the reduced gauge symmetry.

3. Infinitesimal symmetries

A BRST operator is a nilpotent (of order two) differential on the field space.4 In order to construct such an operator,
we must be able to model differentials of physical fields consistently. We do this formally using the Grassmann algebra
G of anticommuting real numbers. The infinitesimal fields are called ghosts in the physics literature, as they decouple
from physical amplitudes. The requirement for nilpotency of the BRST operator may require introducing differentials
for ghost fields themselves as well; these objects are called ghost-for-ghost fields. Ghosts-for-ghosts can be thought
of as two-forms in the field space. All the emerging fields are graded in terms of the ghost number, and there can, in
principle, be an infinite tower of them, though we shall here have to advance up to ghost number three only.

As a field with positive ghost number is an infinitesimal, it gets also at form degree zero its values in the Lie-
algebras Lie G and Lie G ⊗ G rather than the respective groups. Indeed, a typical field of odd ghost number is a
differential form in Ωn(X, Lie G ⊗ G) for some n > 0; for even positive ghost number they are classical differential
forms in Ω∗(X, Lie G). This potential discrepancy with combinatorial differential forms will be explained and put in
context in Section 5.

In this section we shall begin by writing down a BRST operator “s” that generates infinitesimal versions of the
gauge transformations of the last section. Reducibility and nilpotency considerations force us to amend the derivative
s to Q = s + δ + δ̃. The BRST operator we obtain in this way is nilpotent on connection data, but fails to be nilpotent
on one of the ghost fields.

3.1. Infinitesimal transformations

The derivative “s” arises from infinitesimal displacements generated by local gauge transformations hi and the
symmetries of the gerbe in Section 2.4. For the finite local gauge transformation hi ∈ Ω0(Ui , Aut G) corresponds the
infinitesimal, Grassmann-valued ghost field ci ∈ Ω0(Ui , Lie Aut G ⊗ G). Similarly, the affine data (πi , ηi j , αi , Ei ) of
Section 2.4 are all Grassmann-valued ghost fields in this section. We may now write down the local gauge and affine
transformations in infinitesimal form for the gauge fields

smi = πi + iEi − dmi ci (56)

sγi j = ηi j − λi j (E j ) + Ei + [ci , γi j ] (57)

sBi = αi + dmi (Ei ) + [ci , Bi ] (58)

sαi = −[πi , Ei ] + [ci , αi ] (59)

sci =
1
2
[ci , ci ]. (60)

Other fields x transform according to the standard rule

sx = [ci , x]. (61)

As the cocycle data remain constant under the symmetries of the gerbe we set (cf. Section 4.3)

sλi j = 0 (62)

sgi jk = 0. (63)

4 See [30] for a thorough treatment. We use here the concept of “field space” heuristically; in Section 5 we present a more detailed description
of what we mean by it.
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The connection data have ghost number zero, and all the transformation parameters above ci , πi , ηi j , αi , Ei have
ghost number one. The derivative s raises ghost number by one. Ghost number grading is independent of form degree
grading. In this section, a field of form degree p and ghost number q can be thought of as a real number-valued
differential form of degree p when q is even. When q is odd, the components of the differential form are elements of
the Grassmann algebra G. By multiplying two such objects of grading (p, q) and (p′, q ′) we get an object of grading
(p + p′, q + q ′). These two bigraded objects are mutually odd precisely when pp′

+ qq ′ is odd, otherwise even.5 The
brackets [ , ] can be graded so that the pertinent graded Jacobi identity applies.

The differences to the original transformations in Section 2.3 are the following:

• We have discarded terms that are of higher order than linear in affine data, namely [Ei , Ei ]/2 + [πi , Ei ] in sBi
(48), and [ρi , ρi ]/2 + [πi , ρi ] in sαi (55).

• We have added the extra term −[πi , Ei ] in (59). Note that the same term had to be struck off from (48). Also, this
term vanishes at the equivariant ci = 0 fixed point locus of the full nilpotent BRST operator, cf. Section 6.3.

• Commutators between two affine-fields-turned-ghosts have been changed to anticommutators, and vice versa.

The justification for these differences is the fact that s does still generate symmetries of the underlying gerbe,
though infinitesimal.

The fact that sx is infinitesimal of order one means that we can extend the action of s to any functional composed
of fields whose BRST transformation under s we have defined. s is therefore a graded odd derivation, and raises ghost
number by one. Most importantly, it is nilpotent

s2
= 0. (64)

3.2. Reducibility

All of the fields πi , Ei , and ci describe shifts in mi in different ways. Given a specific, fixed shift m′

i − mi there is
latitude in how it is written down in terms of πi , Ei , and ci . In Section 2.4 the latitude in the choice of (πi , Ei ) was
parametrised in terms of ρi . Taking also ci into account we need two more ghost-for-ghosts ϕi ∈ Ω0(Ui , Lie Aut G)

and φi ∈ Ω0(Ui , Lie G).
The new fields force us to amend the BRST differential s −→ s + δ. The new piece, δ, is an odd graded derivation

of ghost number one, as was s. The nontrivial action of δ is

δπi = dmi ϕi + ιρi (65)

δEi = dmi φi − ρi (66)

δci = ϕi + ιφi (67)

δαi = dmi ρi + [Bi , ϕi ] + [φi , νi ] (68)

δηi j = ρi − dmi φi − λi j
(
ρ j − dm j φ j

)
+ [γi j , φi ] + [γi j , ϕi ]. (69)

These transformations are chosen so that δsmi = δsγi j = δsBi = 0. As the action of δ on other fields is trivial, δ is
nilpotent δ2

= 0. Note that s + δ is not nilpotent, but, for instance,

(s + δ)2 Ei = [ϕi , Ei ] + [πi , φi ]. (70)

This non-nilpotency can be remedied partially by taking into account that there is a further latitude in defining the
ρi , φi , ϕi system. This latitude has to be parametrised with the ghost number-three field σi ∈ Ω0(Ui , Lie G ⊗G). This
gives rise to the transformations

δ̄ϕi = −ισi (71)

δ̄φi = σi (72)

δ̄ρi = dmi σi + [ϕi , Ei ] − [φi , πi ] (73)

δ̄σi = [φi , ϕi ]. (74)

The construction is such that δ̄δ(π, E, c) = 0. Again δ̄ annihilates all other fields so that δ̄2
= 0.

5 There is another way of doing this, cf. Section 6.1. This convention is the only one immediately consistent with the infinitesimal symmetries
of the gerbe though.
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Table 2
Fields and their field strengths

(field, ghost) Curvature Domain

(mi , πi ) −→ νi Ui
(γi j , ηi j ) −→ δi j Ui j
(Bi , αi ) −→ ωi Ui

Theorem 2. The operator Q := s + δ + δ̄ is an odd derivation of ghost number one. It is nilpotent Q2x = 0 on all
fields x where we have defined it, except on x = ηi j

Q2ηi j = −

[
λi j (

ϕ j + ιφ j

)
− (ϕi + ιφi ), λi j (E j )

]
−

[
λi j c j − ci , λi j (ρ j − dm j φ j )

]
. (75)

The operator Q does therefore not quite qualify as a BRST operator. Note that Q is nevertheless nilpotent in particular
on the connection data

Q2 Bi = Q2γi j = Q2mi = 0. (76)

Furthermore, the above obstruction to nilpotency vanishes if ϕi + ιφi and ci extend to global sections.
The resolution to this problem is to introduce new fields ai j and bi j that control the behaviour of ci and ϕi on

double-intersections Ui j . In pursuing this, the relationship of the BRST operator to the symmetries of the underlying
gerbe becomes slightly obscured. This happens necessarily because the procedure requires essentially replacing, for
instance, the term dmi φi − λi j (dm j φ j ) in (69) by the covariant derivative of one of the new fields dmi bi j .

Instead of amending Q here further, in Section 5 we will define an operator q which is by construction nilpotent,
and that reduces to Q on-shell. This will require a more geometric understanding of the BRST differential at our
disposal.

3.3. The curvature triple

To each (field, ghost) pair one may associate a curvature as in Table 2. It can be shown now that to linear order the
local, affine, and reduced gauge transformations of the curvature triple (νi , δi j , ωi ) in Section 2.4 arise, as expected,
from those of the underlying connection data modulo terms that vanish when the constraints

C0
i j :=

λi j ∗m j −mi + ιγi j ≈ 0 (77)

C0
i jk := ∂λi j (γi j ) − d̃mi (gi jk) ≈ 0 (78)

B1
i j :=

λi j
π j −πi + ιηi j ≈ 0 (79)

B1
i jk := ∂λi j (ηi j ) − [πi , gi jk] ≈ 0 (80)

are imposed. These constraints arose as cocycle conditions in (32), (35), (44) and (45); their rôle is to relate data on
different charts to each other.

The cocycle conditions (36) and (37)–(40) for the curvature triple are similarly satisfied up to terms proportional
to these constraints. The cocycle conditions (37)–(40) are easy enough to verify using standard de Rham calculus
with Lie-algebra valued differential forms. The cocycle condition (36) requires special attention, however, because it
involves derivatives of a group-valued local function. We explain how this comes about carefully in

Theorem 3. The cocycle condition

∂λi j δi j ≈ [νi , gi jk] (81)

arises as a consequence of the cocycle conditions (32) and (35) or, equivalently, as a consequence of the constraints
C0

i j ≈ C0
i jk ≈ 0.
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Proof. One applies ∂λi j on the definition of δi j in Eq. (34). Note first that the derivative ∂λi j has the essential property

∂λi j

(
λi j (B j ) − Bi

)
= −[ιBi , gi jk]. (82)

After obvious cancellations this can be seen as follows:

ιgi jk (Bi ) − Bi = gi jk Bi gi jk
−1 B−1

i = [gi jk, Bi ] = −[Bi , gi jk] = −[ιBi , gi jk]. (83)

Using now repeatedly the constraint Ci j ≈ 0 we arrive at the expression

∂λi j δi j ≈ −[ιBi , gi jk] + dmi ∂λi j γi j −
1
2
[∂λi j γi j , ∂λi j γi j ]. (84)

At this point we have to return to the group-valued differential forms, and the notation of Ref. [2]: the above-appearing
expression

dmi ∂λi j γi j −
1
2
[∂λi j γi j , ∂λi j γi j ] (85)

can then be cast in the form

= δ1
mi

(∂λi j γi j ) − [∂λi j γi j , ∂λi j γi j ] by def. of δ1
m (86)

= −δ1
mi

(−∂λi j γi j ) by Eq. (6.1.19) of [2] (87)

≈ −δ1
mi

(−δ̃0
mi

gi jk) by Eq. (35) (88)

= −δ1
mi

(δ0
mi

(−gi jk)) by Remark 6.1 of [2] (89)

= −[[κ(mi ), g−1
i jk ]] by Eq. (A.1.13) of [2] (90)

= +[κ(mi ), gi jk]. (91)

Combining this with the definition of νi concludes the proof. �

4. Topological Yang–Mills theory

Consider isomorphism classes p ∈ P of principal bundles L p with connection and possibly other data on a fixed
manifold X . The universal bundle P −→ X × P fits in the diagram

L p −−−−→ P

π

y yΠ

X × {p}
i

−−−−→ X × P.

(92)

In the case of Topological Yang–Mills Theory [25,31] (cf. [32] for a review) we fix the local transition functions `i j
consistently `i j` jk`ki = 1 once and for all, and keep free only the local connection one-form m ∈ A on the bundle.
The arising universal bundle P is locally of the form L p × A. The gauge equivalence classes of the connections
P = A/G do not necessarily form a smooth manifold; the universal bundle, nevertheless, has a smooth base space,
which is locally of the form (L p ×A)/G. If G acts freely on A, this reduces to X ×A/G, and we identify P = A/G.

As all objects transform in the Yang–Mills case covariantly between charts, there is therefore no need to indicate the
local chart, and we will suppress the pertinent indices for a moment. Choosing (gi jk, λi j ) = (1, `i j ) the non-Abelian
gerbe collapses now to Topological Yang–Mills theory with only m, π, c, ϕ active, and other fields set to trivial values.

Given a one-form c ∈ T ∗A, we may construct a covariant exterior derivative on P

Dµ = dm + qc, (93)

where qc X = qX + [c, X ]. Here d is the exterior derivative on X and q on A/G, when the latter makes sense. The
curvature can be expanded in terms of the bidegree

D2
µ = F (2,0)

+ F (1,1)
+ F (0,2) (94)

:= κ(m) + π + ϕ; (95)
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with the latter line we merely mean that e.g. the field π stands for the (1,1) component of the curvature. These
definitions imply then, in fact, together with the standard Bianchi identity DµF = 0, the action of q on various fields

qm = π − dmc (96)

qc = ϕ −
1
2
[c, c] (97)

qπ = −dmϕ − [c, π] (98)

qϕ = −[c, ϕ]. (99)

4.1. Observables

The Bianchi identity implies also

(d + q)TrFn
= 0. (100)

Let us decompose TrFn
=

∑
k Wk , where k is the form degree on X , and integrate each form over γ ⊂ X of suitable

dimension k [25]

Wk(γ ) :=

〈∫
γ

Wk

〉
. (101)

For this to be a good observable γ should not have a boundary, as only then is (101) BRST-closed

qWk(γ ) = −

〈∫
γ

dW k−1

〉
= 0. (102)

On the other hand, changing γ by a boundary ∂s changes this observable by a BRST-exact term

Wk(∂s) =

〈∫
s

dW k

〉
= −

〈
q

∫
s

Wk−1

〉
= 0, (103)

so that the vacuum expectation value Wk(γ ) remains invariant. The vacuum expectation values Wk(γ ) depend
therefore only on the homology class [γ ] ∈ Hk(X). In the case of Topological Yang–Mills, Wk(γ ) are the
Donaldson–Witten invariants [25].

4.2. Curvature

Let us decompose – following Ref. [32] and references therein – the BRST operator into horizontal and vertical
parts

q = qH
+ qV , (104)

where qV acts along the fibre G, and qH on the base A/G.
The vertical derivative generates standard gauge transformations

qV m = −dmc (105)

qV c = −
1
2
[c, c] (106)

qV x = −[c, x]. (107)

It is nilpotent (qV )2
= 0, so that its curvature vanishes identically. The horizontal part has curvature

(qH )2m = −dmϕ (108)

(qH )2x = [ϕ, x], (109)

where x is any other field than m. One may think of qH as the covariant exterior derivative [32] on the bundle
A −→ A/G, and of ϕ as its curvature.
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4.3. Ghost number in combinatorial differential geometry

Given a differential form on the universal bundle, one can decompose it locally in terms of differential forms on
L p and those on A. The degree of the former is the de Rham degree, and the degree of the latter the ghost number.

Take the points x, y, ξ that are all infinitesimally close in L p × A, such that the projections of x and y onto the
second factor are identical, and that the projection of x and ξ onto the first factor are identical. Then the connection
µ ∈ Ω1(P, G) can be decomposed as

µ(x, y) = m(x, y) (110)

µ(x, ξ) = c(x). (111)

The BRST transformation q is clearly displacement along A

δ̃0
µg(x, ξ) = µ(x, ξ)(g(ξ))g(x)−1 (112)

= c(x)(g(ξ))g(x)−1 (113)

= c(x)(g(ξ))g(ξ)−1 g(ξ)g(x)−1. (114)

The last line is really the covariant derivative “[c, g]+qg”. If we drop the Faddeev–Popov ghost setting c = 0, we get
the covariant exterior derivative on the base spaceP discussed above, qH . This means that objects that remain constant
in BRST transformations q, are covariantly constant sections of A −→ P . This will have interesting repercussions in
Section 7.3.

5. The universal gerbe

We started in Section 2.1 with a gerbe whose cohomology class was given by the cocycle data (λi j , gi jk) in G. In
Section 2.3 we recalled the fields needed to decompose the gerbe fully. Let us denote this set of fields – the connection
data etc. – for a fixed gerbe in G by Â. This notation is justified, as it is clearly a generalisation of the affine space of
connections that appeared in Section 4.

Let us denote the symmetries of the fully decomposed gerbe in a similar vein by Ĝ. Then picking a specific fully
decomposed gerbe Pg provides a representative for the equivalence class g ∈ H = Â/Ĝ. The universal gerbe G can
be constructed formally (as a set) as the disjoint union of all such representatives of all isomorphism classes of fully
decomposed gerbes, and fits in a similar diagram to that of the universal bundle (92)

Pg −−−−→ G

π

y yΠ

X × {g}
i

−−−−→ X ×H.

(115)

Again, we keep the cocycle data (λi j , gi jk) fixed on a fixed cover {Ui } of X , and let the connection data (mi , γi j , Bi ) ∈

Â vary freely. Isomorphism classes inH are equivalence classes of elements of Â identified by symmetries of a gerbe
Ĝ.

To show that the quotient G −→ G/Ĝ should actually define a smooth bundle would require careful topologising G

and studying the action of Ĝ on it. As in the case of the universal bundle, the existence of a smooth quotientH = Â/Ĝ
would specifically require further assumptions on the gauge data, such as restricting to irreducible connections only.
In the discussion that follows, we shall nevertheless need only the fact that H provides a local moduli space for
fully decomposed gerbes near a fixed reference gerbe, and is not strictly speaking dependent on whether G exists
as a universal object or not. The local statement is certainly true, though the stronger assertion seems plausible as
well. Note that the universal gerbe in the cohomologically Abelian setting of bundle gerbes was defined rigorously in
Ref. [24].

We can think of the universal gerbe G also as a stack6 of local universal bundles {Pi } on X , and invertible
morphisms between them λi j ∈ End(P j , Pi ) with extra structure Â and symmetries Ĝ. The symmetries of the gerbe

6 Or, more correctly, a stack of categories whose objects are local bundles.
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Table 3
Fields and field strengths on the universal gerbe

Ghost# 0-form 1-form 2-form 3-form

G 0 gi jk γi j Bi , δi j ωi
1 ai j Ei , ηi j αi
2 φi , bi j ρi
3 σi

Aut(G) 0 λi j mi νi
1 ci πi
2 ϕi

Ĝ include clearly the structure groups Gi of the underlying local universal bundles Pi in a certain way. A mismatch is
bound to arise where two universal bundles overlap; the effects of this can be analysed by investigating the behaviour
of the horizontal part of the covariant connection on these bundles in Section 5.1.1.

As in the case of the universal bundle, instead of the underlying gerbe Pg −→ X × {g} in the equivalence class g,
we consider the fully decomposed universal gerbe G −→ X ×H with connection data (µi , Vi j , Ai ). These fields can
be expanded in ghost number

µi = mi + ci (116)

Vi j = γi j + ai j (117)

Ai = Bi + Ei + φi , (118)

where the lowest components (mi , γi j , Bi ) are the connection data of the underlying gerbe. The higher components
appear in the affine and the gauge transformation data of the underlying gerbe on X ; as in the case of the
universal bundle, ghost fields find a natural place in the higher components of the connection data. Here only
ai j ∈ Ω0(Ui j , Lie G ⊗ G) is new in the non-Abelian construction, and in Section 7.3 we shall see that it is actually
required for the standard Čech–de Rham Abelian construction.

In what follows, two bigraded fields with bigrading (p, q) resp. (p′, q ′) are mutually odd precisely when both the
total gradings p + q and p′

+ q ′ are odd. In this way all fields can be treated consistently as differential forms on the
universal gerbe, rather than differential forms on the underlying manifold with an additional (ghost number) grading.

The curvatures are defined precisely in the same way as in Section 2.3, though now they can be expanded according
to the ghost number of each component

Fi = νi + πi + ϕi (119)

:= Fi − ιAi (120)

∆i j = δi j + ηi j + bi j (121)

:= λi j (A j ) − Ai + Dµi Vi j −
1
2
[Vi j , Vi j ] (122)

Ωi = ωi + αi + ρi + σi (123)

:= Dµi Ai . (124)

All these fields can be collected in Table 3.

5.1. The differentials along the universal gerbe

These definitions determine the curvature triple (νi , δi j , ωi ) in terms of the connection data (mi , γi j , Bi ), as well
as the differentials

qmi = πi + ιEi − dmi ci (125)

qci = ϕi + ιφi −
1
2
[ci , ci ] (126)

qcγi j = ηi j + Ei − λi j (E j ) − dmi ai j + [γi j , ai j ] (127)
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qcai j = bi j + φi − λi j (φ j ) +
1
2
[ai j , ai j ] (128)

qc Bi = αi − dmi Ei (129)

qc Ei = ρi − dmi φi (130)

qcφi = σi . (131)

The form of the Bianchi identities in terms of the universal connection data is the same as in Section 2.3

Dµi Fi + ιΩi = 0 (132)

Dµi ∆i j + Ωi − λi j (Ω j ) + [ι∆i j − Fi , Vi j ] = [Ci j , λi j (A j )] (133)

Dµi Ωi − [Fi , Ai ] = 0, (134)

so that the lowest components in ghost number reproduce precisely the corresponding identities on X . Note that we
keep track of the constraint functional

Ci j :=
λi j ∗

µ j −µi + ιVi j (135)

= C0
i j + C1

i j , (136)

where

C0
i j :=

λi j ∗m j −mi + ιγi j (137)

C1
i j :=

λi j c j −ci + ιai j . (138)

This is because the cocycle equations are needed for an off-shell construction of the nilpotent derivative q. Indeed, the
higher components can be used to read off the differentials

qcπi = −ιρi − dmi ϕi (139)

qcϕi = −ισi (140)

qcηi j = −dmi bi j − ρi + λi j (ρ j ) + [πi − ιηi j , ai j ] + [ϕi − ιbi j , γi j ]

− [C0
i j , λi j (φ j )] − [C1

i j , λi j (E j )] (141)

qcbi j = −σi + λi j (σ j ) + [ϕi − ιbi j , ai j ] − [C1
i j , λi j (φ j )] (142)

qcαi = −dmi ρi + [νi , φi ] + [πi , Ei ] + [ϕi , Bi ] (143)

qcρi = −dmi σi + [πi , φi ] + [ϕi , Ei ] (144)

qcσi = [ϕi , φi ]. (145)

Theorem 4. The exterior derivative q is an odd, identically nilpotent (of order two) differential in the field space.

Proof. Follows immediately from the definition of q as the exterior derivative on H from the point of view of the
universal gerbe G −→ X ×H. It is instructive to verify this by a direct calculation as well. �

Modulo a few sign differences, which we shall discuss in detail in Section 6, the action of q is on-shell the same as
the BRST operator Q in Section 3 and Theorem 2 in particular.

5.1.1. Horizontal derivative
As in Section 4.2, one may again decompose q = qH

+ qV , where all ci dependence is collected in qV ; this makes
qV effectively into a translation along the orbit of local gauge transformations Gi . One may verify that the vertical
derivative is still nilpotent (qV )2

= 0. The horizontal differential squares to (qH )2x = [ϕi + ιφi , x] as expected on all
other fields than

(qH )2ηi j = [ϕi + ιφi , ηi j ] + [
λi j

(ϕ j + ιφ j ) − (ϕi + ιφi ), λi j (E j )] (146)

(qH )2bi j = [ϕi + ιφi , bi j ] + [
λi j

(ϕ j + ιφ j ) − (ϕi + ιφi ), λi j (φ j )]. (147)

The extra piece in (146) is the same that obstructs the nilpotency of Q in Theorem 2.
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This calculation shows that we may interpret qH as the covariant exterior derivative on G −→ G/Gi only where
the local curvature ϕi + ιφi extends to a well-defined Lie Aut G-valued section. Outside this domain basic functionals
are not necessarily covariantly constant on G/Gi . This means effectively that it is not possible to separate the local
gauge symmetry part Gi from the full symmetry group of the gerbe Ĝ in any clean way when fields on the double
intersections Ui j are taken in general into account.

In Section 8 we shall nevertheless see how the local curvature ϕi + ιφi does extend to a well-defined Lie Aut G-
valued section at certain physically relevant configurations, namely fixed point loci of the BRST operator, cf.
Section 6.3.

5.2. Constraint algebra

The BRST transformation rule of δi j can be deduced in two independent ways, on the one hand from the Bianchi
identity (133), and on the other by variational calculus from the definition δi j = δi j (mi , γi j , Bi ). The results must be
consistent: this leads us to the observation, as anticipated in Section 3.1, that the structure constants must indeed be
held constant in BRST variations qλi j = 0, and that the constraint C1

i j ≈ 0 defined in (138) should hold. It follows
then qgi jk = 0.

The constraint Ci j ≈ 0 holds already by definition of the universal gerbe, where the one-form µi is a part of the
connection data and satisfies therefore the appropriate cocycle conditions. The universal constraints are indeed defined
as follows:

Definiton 5.1.

Ci j :=
λi j ∗

µ j − µi + ιVi j (148)

Ci jk := ∂λVi j + δ(0)
µi

g−1
i jk (149)

Bi j :=
λi j F j − Fi + ι∆i j (150)

Bi jk := ∂λ∆i j − [Fi , gi jk]. (151)

The lowest components reproduce

• The constraints C0
i j , C

0
i jk,B

1
i j and B1

i jk of the underlying gerbe as in Section 3.3;

• The constraint C1
i j of (138);

• The cocycle conditions (36) and (39) where the former is identically satisfied B0
i j = 0 and the latter is, by

Theorem 3, weakly satisfied B0
i jk ≈ 0.

The new constraints are

C1
i jk = ∂λai j − [ci , gi jk] (152)

B2
i j =

λi j
ϕ j − ϕi + ιbi j (153)

B2
i jk = ∂λbi j − [ϕi , gi jk]. (154)

The reason for imposing these constraints is, again, the geometry of the universal gerbe. On the other hand, there is
circumstantial evidence already on the level of the underlying gerbe that they should be imposed: the constraint B2

i j

appears as an obstruction in Theorem 2; the inner parts of the constraints C1
i jk and B2

i jk follow as integrality conditions

from C1
i j and B2

i j , respectively.
Whether this is an acceptable set of constraints from the point of view of the underlying gerbe as well as the

universal gerbe depends on whether it forms, together with the BRST operator q, a closed algebra. This can be verified
by calculating their covariant derivatives.
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Theorem 5.

δ(1)
µi
Ci j = Bi j + [ιVi j , Ci j ]

δ(1)
µi
Ci jk = Bi jk + [Ci j , Vi j ] + [

λi j C jk, Vi j + λi j V jk] + [
λi j λ jk Cki , ∂λVi j ]

δ(2)
µi
Bi j = [ιVi j ,Bi j ] + [ιAi +

λi j F j , Ci j ]

δ(2)
µi
Bi jk = [

ιgi jk Fi , Ci jk] + [λi j∆ jk + λi jλ jk∆ki , Ci j ] + [λi jλ jk∆ki ,
λi j C jk]

+ [Vi j + λi j V jk,Bi jk] − [λi j V jk,Bi j ] + [λi jλ jk Vki ,
λi j λ jk Bki ].

From these results it is now possible to read off the actual constraint algebra. This is because the combinatorial
differential includes the BRST differential q

qcCi j = δ(1)
µi
Ci j − dmi Ci j −

1
2
[Ci j , Ci j ] (155)

qcCi jk = δ(1)
µi
Ci jk − dmi Ci jk −

1
2
[Ci jk, Ci jk] (156)

qcBi j = δ(2)
µi
Bi j − dmiBi j (157)

qcBi jk = δ(2)
µi
Bi jk − dmiBi jk . (158)

For instance,

qcCi j = Bi j + [ιVi j , Ci j ] − dmi Ci j −
1
2
[Ci j , Ci j ]. (159)

This can be decomposed order by order in ghost number

0 =
λi j

ν j − νi + ιδi j − dmi −γi j C
0
i j −

1
2
[C0

i j , C
0
i j ] (160)

qcC0
i j = B1

i j + [ιai j , C
0
i j ] − dmi −γi j C

1
i j − [C0

i j , C
1
i j ] (161)

qcC1
i j = B2

i j + [ιai j , C
1
i j ] −

1
2
[C1

i j , C
1
i j ]. (162)

The first of these equations can be checked independently by using the definitions of νi and δi j in terms of connection
data. On-shell it reduces to the cocycle condition (39). The right-hand sides of the rest of the equations vanish on-shell,
and the algebra closes.

There is one final twist to the constraint algebra: it is still reducible. This is because one can show again by direct
calculation that the following relationships between the constraints apply:

∂λCi j = ιCi jk (163)

∂λBi j = ιBi jk . (164)

This means that we must, effectively, include these two equations in the constraint algebra as further constraints. We
do this in the next section. In that analysis we shall need the following similar

Lemma 6. The BRST transformations of the constraints are consistent on triple intersections in the sense ∂λqCi j =

ιqCi jk
.

5.3. Constraints in the BRST cohomology

To trivialise the constraints Ci j , Ci jk ,Bi j , andBi jk in BRST cohomology, we need to introduce two cohomologically
trivial pairs of fields (Λi j , Ki j ) and (Λi jk, Ki jk). Expanded in ghost number, the fields are

Λi j := Λ−1
i j + Λ0

i j (165)

Ki j := K 0
i j + K 1

i j . (166)
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Table 4
Lagrange multiplies for imposing constraints

Ghost# 0-form 1-form 2-form

G −1 Λ−1
i jk

0 Λ0
i jk K 0

i jk

1 K 1
i jk

Aut(G) −2 M−2
i jk

−1 M−1
i jk Λ−1

i j , N−1
i jk

0 Λ0
i j , N 0

i jk K 0
i j

1 K 1
i j

We can now define their BRST transformations as

qΛi j := Ci j − Ki j (167)

qKi j := qcCi j (168)

and similarly for Λi jk, Ki jk . Here qCi j is a known expression, and reduces on-shell to the constraints qCi j ≈ B1
i j +B

2
i j .

The lowest order term B0
i j does not, and should not, appear, as it is algebraically trivial. The BRST operator q is still

nilpotent, and the constraints Ci j and Bi j are exact in the cohomology of q. (Note the absence of the ghost field c here.
Any attempt at making (Λi j , Ki j ) transform covariantly under q would lead to an accumulation of ϕi + ιφi terms that
could not be cancelled.)

The reducibility relations observed in (163) and (164) can now be taken care of by introducing the ghost-for-ghost
fields (Mi jk, Ni jk) and defining

qMi jk = ∂λΛi j − ιΛi jk + Ni jk (169)

qNi jk = ∂λKi j − ιKi jk . (170)

We have summarised the new fields required for trivialising the constraints in Table 4. This table includes fields
of so negative ghost number that their total degree as universal forms is negative, indeed −1 for the components of
Mi jk . From the field theory point of view this is of no consequence. From the point of view of the universal gerbe the
situation is slightly odd, however, and may suggest that we should see the Čech degree as a part of the grading. Then
the total degree of Mi jk is zero and Ni jk is one. Similarly the degree of Λi j , Ki j is then one and Λi jk, Ki jk is two, and
the Čech differential ∂λ raises the degree by one.

The constraint algebra closes now, the full BRST operator q is identically nilpotent, takes into account all the
reducibility relations, and its cohomology is supported on the constraint surface

Ci j ≈ Ci jk ≈ Bi j ≈ Bi jk ≈ 0. (171)

Assuming that we have the traces tri , Tri and the Hodge star ∗ of a Euclidean metric at our disposal (cf. Section 7.1),
a suitable gauge fermion that imposes these constraints in a path integral is

Ψ = TriΛi j ∧ ∗Ki j + triΛi jk ∧ ∗Ki jk + Tri Mi jk ∧ ∗Ni jk . (172)

Integrating out N one gets a Gaussian suppression for the norm of ∂λΛi j − ιΛi jk , and the path integral over M forces
∂λKi j − ιKi jk = 0. Λ and K act as Lagrange multipliers for C and B respectively.

6. Comparison

We have presented in Sections 3 and 5 two very similar constructions that nevertheless differ in certain details. To
show that they are mathematically equivalent one would have to demonstrate that the cohomologies of Q and q are
isomorphic. Of course, as one of the operators, Q, is not nilpotent this cannot be done directly.
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The field space where the nilpotent operator q acts, is larger than the one where Q does. The operators can,
therefore, be compared only in a locus where the additional fields ai j and bi j are somehow eliminated. In a classical
physical theory this could be done by imposing equations of motion; unfortunately, in want of an action principle, we
do not have enough information to do so, nor should we indeed impose classical equations of motion on fields which
we plan to quantise.

What we really need to show, in fact, is that any path integral with a q-invariant measure and a q-invariant integrand
localises in the new fields ai j and bi j and that the effective BRST operator q acts in this locus as Q. This means that
the quantum cohomology of q is cohomology of the fully decomposed gerbe with fixed cocycle data.7 This localisation
does indeed happen, and the loci where the path integral localises are the fixed point loci of q.

6.1. Grading

Let us start by eliminating the most obvious difference, namely that of grading. In Section 3 the Lie-bracket of two
fields x and y (in a fixed representation) with bigradings (p, q) and (p′, q ′) was defined

[x, y] =

{
xy − (−)pp′

+qq ′

yx in Section 3
xy − (−)(p+q)(p′

+q ′)yx in Section 5.
(173)

Also the two BRST operators behaved differently in the presence of an exterior derivative: for the former we have
Qd = dQ, whereas for the latter qd = −dq.

We can map the constructions one to the other by

(a) Mapping every quadratic object xy in the BRST transformation rules

xy 7→ (−)pq ′

xy, (174)

where p is the form degree of x and q ′ is ghost number of y.
(b) Redefining fields

(ci , ϕi , φi , ρi , σi ) 7→ (−ci , −ϕi , −φi , −ρi , −σi ). (175)

This mapping is well-defined in the sense that the result does not depend on the order in which the bilinears are
written down. It also leaves the curvature triple unchanged. There are changes in the new ghost constraints (138) and
(152)–(154). Applying these rules we get the nilpotent extension q̄ of Q

q̄mi = πi + ιEi − dmi ci (176)

q̄cγi j = ηi j + Ei − λi j (E j ) + dmi ai j − [γi j , ai j ] (177)

q̄c Bi = αi + dmi Ei (178)

q̄cπi = ιρi + dmi ϕi (179)

q̄c Ei = −ρi + dmi φi (180)

q̄ci = ϕi + ιφi +
1
2
[ci , ci ] (181)

q̄cηi j = −dmi bi j + ρi − λi j (ρ j ) + [ιηi j − πi , ai j ] − [ϕi + ιbi j , γi j ]

+ [C0
i j , λi j (φ j )] − [C1

i j , λi j (E j )] (182)

q̄cαi = dmi ρi − [νi , φi ] − [πi , Ei ] − [ϕi , Bi ] (183)

q̄cϕi = −ισi (184)

q̄cφi = σi (185)

q̄cρi = dmi σi + [πi , φi ] + [ϕi , Ei ] (186)

q̄cσi = −[ϕi , φi ] (187)

7 This is cohomology of the fields living on the non-Abelian gerbe, not the cohomology group H1(X, G) of Section 2.1.
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q̄cai j = bi j − φi + λi j (φ j ) +
1
2
[ai j , ai j ] (188)

q̄cbi j = σi − λi j (σ j ) − [ϕi + ιbi j , ai j ] + [C1
i j , λi j (φ j )] (189)

q̄Λi j = Ci j − Ki j (190)

q̄Ki j = q̄cCi j (191)

q̄Λi jk = Ci jk − Ki jk (192)

q̄Ki jk = q̄cCi jk (193)

q̄Mi jk = ∂λΛi j − ιΛi jk + Ni jk (194)

q̄Ni jk = ∂λKi j − ιKi jk . (195)

This differs from Q in the definitions of q̄γi j and q̄ηi j , and in that it involves the auxiliary fields ai j and bi j .

6.2. On-shell algebra

The discussion of Section 5.3 guarantees that we can make the path integral localise on subsets of the field space
where the constraints vanish. On that surface we can define an effective BRST operator q̂ that is formed from q̄ by
simply dropping the constraints that appear explicitly in the definitions of q̄ηi j and q̄bi j

q̂cηi j = −dmi bi j + ρi − λi j (ρ j ) − [ιηi j + πi , ai j ] − [ϕi + ιbi j , γi j ] (196)

q̂cbi j = σi − λi j (σ j ) − [ϕi + ιbi j , ai j ], (197)

and q̂x := q̄x for any other field x . This operator continues to be nilpotent on the constraint surface, as can be seen
using

Lemma 7.

q̂2γi j = −[C0, λi j (φ j )] + [C1, λi j (E j )] (198)

q̂2ηi j = −[B1, λi j (φ j )] + [B2, λi j (E j )] + [C0, λi j (σ j )] + [C1, λi j (ρ j )] (199)

q̂2ai j = −[C1, λi j (φ j )] (200)

q̂2bi j = −[B2, λi j (φ j )] + [C1, λi j (σ j )], (201)

and q̂2x = 0 for all other fields.

In comparing Theorem 2 and Lemma 7 we notice that the terms involving
λi j

ϕ j − ϕi and
λi j c j − ci in Theorem 2

have been completed to the constraints B2
i j and C1

i j in Lemma 7, respectively. (Other differences have to do with the
consistent treatment and elimination of the new fields ai j and bi j .)

As the original symmetries of the gerbe made use of constraints as cocycle conditions, we should compare q̂ (rather
than the nilpotent q̄) with Q. What the above discussion shows is that, on the constraint surface, we can indeed turn q̄
consistently into a non-nilpotent on-shell operator q̂ whose action generalises, in a certain way, that of Q.

6.3. Eliminating auxiliaries

Having dealt with the constraints that appear explicitly in the definition of q̄, we are ready to investigate the rôle
played by the auxiliary fields ai j and bi j . For this we need the following

Lemma 8. Let the odd vector field S on V be a symmetry of both the measure µ and the function I . Then the integral∫
µI is supported only at the fixed point loci of S in V .
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Proof. The well-known argument [33] is as follows: let S = ∂/∂θ be an anticommuting vector field on V , and θ the
local anticommuting coordinate along which S generates translations. Such a coordinate exists wherever the action of
S is free. Let S act freely on U ⊂ V , so that µ = µ′

∧ dθ and SI = 0. Then∫
U

µI =

∫
U ′

µ′
∂

∂θ
I = 0 (202)

by the properties of the Berezin integral. Hence the only nontrivial contributions can arise from the fixed point set of
S in V . �

Requiring that q should act consistently on ai j , i.e. qai j = 0, fixes bi j as a functional of other fields in the theory.
At this locus we have

ai j = ãi j (203)

bi j = φi − λi j (φ j ) −
1
2
[ai j , ai j ] − [ci , ai j ], (204)

where ãi j is a fixed background field qãi j = 0. Possible values include, but are not restricted to, ãi j = 0. One can
check

q̄
(

φi − λi j (φ j ) −
1
2
[ai j , ai j ] − [ci , ai j ]

)
= q̄bi j . (205)

This means that we can use (204) as an algebraic identity. By Lemma 7, any q̄-invariant path integral then localises to
the values of ai j and bi j given in (203) and (204).

We may now make use of the above values of ai j and bi j , and compare the transformation rules on-shell for Q and
q̂. Those that are functionally different are

q̂γi j = Qγi j + dmi −ιγi j
ãi j (206)

q̂ηi j = Qηi j + [ιηi j − πi + dmi −ιγi j
ãi j , ãi j ] + dmi −ιγi j

[ci , ãi j ]. (207)

When ãi j = 0 we see that q̂ and Q agree.
It is not quite clear from this analysis what rôle the other vacua with ãi j 6= 0 play. One possibility is that one may

be able to localise ai j at ai j = 0 in the path integral by suitable gauge fixing. If this is the case, then the constraint C1
i j

will force the local Faddeev–Popov ghosts ci to form a globally well defined scalar field. This would mean that local
gauge transformations on different charts must be globally consistent: the gauge is the same everywhere.

7. Notes on observables

Observables O are BRST-closed qO = 0 functionals on the field space. The vacuum expectation values of
BRST-exact functionals vanish. Physical states belong to the cohomology of q. Determining that cohomology is a
fundamental problem in Quantum Field Theory.

In this section we look for observables for a fully decomposed non-Abelian gerbe. It turns out that the standard
field theory methods do not quite suffice, and the outer part of the automorphism group plays a crucial rôle.

7.1. Local traces

Due to the freedom to choose the frame in the local gauge symmetry, observablesO should first of all not carry bare
indices in representations of G or Aut G. This is because no covariant quantity x is BRST-closed: qx = −[c, x] + · · ·

does not vanish identically.
Given on each chart Ui a finite dimensional linear representations of G and Aut G – or indeed of the local groups

Gi and Aut Gi , to be more precise – we have the traces

tri : Gi −→ R (208)

Tri : Aut Gi −→ R (209)
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at our disposal. Traces are not invariant in outer automorphisms, so this does not provide, directly, local invariants
for a given field configuration. Since we are at liberty to define each trace locally as we please, we may nevertheless
choose them to be compatible in the following sense:

triλi j (x j ) = tr j x j , (210)

and similarly for Tri . It would not have been possible to assume them to be invariant under arbitrary automorphisms
— the λi j are special. The cyclic property of the finite dimensional trace guarantees that these choices can be done in
a globally consistent way

triλi jλ jkλki (xi ) = tri

(
gi jk xi g−1

i jk

)
= tri xi , (211)

and similarly for Tri . In traditional Quantum Field Theory typical observables are indeed “invariant8” polynomials,
i.e. combinations of traces of covariant operators, such as Chern classes.

In the pure Yang–Mills case the BRST operator q reduces to the covariant exterior derivative qH on the bundle
A −→ A/G whose fibre is the gauge group G = Ω0(X, G). The curvature of this differential is one of the scalar
fields in the theory, and hence nontrivial. Nevertheless, operated on invariant polynomials on the base space A/G, qH

is nilpotent – thanks to the fact that traces of commutators vanish φ ∈ G

(qH )2trx = tr[φ, x] = 0. (212)

In the context of a non-Abelian gerbe, this does not happen, for several reasons:

(i) Invariance does not imply well-definedness on intersections, as even the curvature triple may jump there, cf. (36),
(39) and (40).

λi j F j − Fi ≈ −ι∆i j (213)

∂λi j (∆i j ) ≈ [Fi , gi jk] (214)

λi j (Ω j ) − Ωi ≈ dµi −ιVi j
(∆i j ) + [Vi j , Fi ]. (215)

(ii) The curvature of qH is given locally on Ui by ϕi + ιφi , but since ϕi is not an inner automorphism there is no
guarantee that the square (qH )2 should vanish on traces

(qH )2tri xi = tri [ϕi + ιφi , xi ] = tri [ϕi , xi ] 6≡ 0. (216)

(iii) Gauge structure is not global; covariant derivatives qH on different charts do not glue together consistently on
Ui j , cf. Section 5.1.1.

On the other hand, it is precisely these complications that make it possible for outer automorphisms to appear in
BRST cohomology, and to make contact with the cohomology of non-Abelian gerbes in Section 2.1. Despite these
difficulties, traces have the following two useful properties:

Lemma 9. Cyclicity of the finite dimensional trace implies

tri dmi λi j X j ≈ triλi j dm j X j . (217)

When the connection one-form is inner, i.e. mi = ιni for some ni ∈ Ω1(Ui , G),

dtri X i = tri dιni
X i . (218)

Proof. The first point follows upon using the constraint Ci j ≈ 0 and the fact group-valued one-form tri [γi j , X i ] =

0. �

For general Aut G-valued forms m (218) is not true as tri [m, X ] does not necessarily vanish. Traces of commutators
vanish only when the automorphism m happens to be inner m ∈ imι and its form degree positive.

8 Invariant under inner automorphisms.
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7.2. Fake curvature and Donaldson–Witten invariants

The natural generalisation of the second Chern class that appeared in Donaldson–Witten theory is to replace κ(mi )

with the fake curvature νi and use the local trace

1
2

Tri Fi ∧ Fi = Tri

(
1
2
νi ∧ νi + πi ∧ νi + ϕi ∧ νi +

1
2
πi ∧ πi + πi ∧ ϕi + ϕi ∧ ϕi

)
. (219)

This can be thought of as a local deformation of the Donaldson–Witten invariants by ιBi . Unlike the Chern class used
in Donaldson–Witten theory, (219) does not determine an element in H∗(X, R), however:

• It is not globally defined, unless ι∆i j vanishes. This is because

λi j F j = Fi − ι∆i j . (220)

• It is not closed, unless ιΩi vanishes

(d + q)
1
2
(Tri Fi ∧ Fi ) = −Tri (ιΩi ∧ Fi ). (221)

Note that the right-hand side in (221) is a globally on X defined differential form precisely when (219) is. But then
(221) is cohomologically trivial and does not lead to interesting observables. The Donaldson–Witten invariants are
produced, in fact, only in the essentially Abelian case where

ιΩi = ι∆i j = 0. (222)

This can of course be arranged by assuming

ιAi = δ(1)
µi

(−ιVi j ) = 0. (223)

7.3. Abelian cases

In this section we shall investigate the cohomology of the trace part of a non-Abelian gerbe: this leads to the
Abelian gerbe with structure of [28].9

Suppose mi is in the image of ι so that Lemma 9 holds. Let us consider the trace parts of the rest of the connection
data

B̄i := tri Bi (224)

Āi j := triγi j (225)

ḡi jk := deti gi jk . (226)

The corresponding three-form ω̄i := dB̄ = tri dmi Bi is now by (38) closed, and satisfies by (40)

ω̄i = ω̄ j + dδ̄i j (227)

where again δ̄i j = triδi j . As long as there is no more information about δ̄i j , the local three-forms do not patch together
in any useful way.

Suppose further that δ̄i j = 0. Then ω̄i extends to a well-defined global differential form ω̄ ∈ Ω3(X, R). (Note that
this implies q̄δ̄i j = 0, which leads to further conditions between ghost fields ᾱ j − ᾱi + dη̄i j ≡ 0 modulo traces of
commutators.) The cocycle conditions (28), (34) and (35) take the form

B̄ j − B̄i + d Āi j = 0 (228)

Āi j + Ā jk + Āki − d ln ḡi jk = 0 (229)

ḡ jkl ḡi jl ḡ
−1
i jk ḡ−1

ikl = 1, (230)

9 Note that when the λi j part of the cocycle data is trivial, the gerbe is called Abelian in [3]. Indeed, this implies ιgi jk = 0. A fully decomposed
Abelian gerbe is discussed in detail in Section 7.3 of Ref. [2].
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where we used triδ
(0)g−1

i jk = −d ln ḡi jk . This defines a representative of a class [B̄i , Āi j , ḡ−1
i jk ] in the standard Čech–de

Rham cohomology or, in other words, an Abelian gerbe with connection and curving [28].
It is interesting to find the part of the symmetries of the non-Abelian gerbe that correspond to the standard action

of a Čech–de Rham one-cochain on the above two-cocycle.
The symmetries of the non-Abelian gerbe involve among other generators Ēi := tri Ei and āi j := tri ai j . As

the one-cochain involves real fields and not ghosts, we need to consider Ei , ai j as elements of Ω1(Ui , Lie G) and
Ω0(Ui j , Lie G). As we have argued in Section 6.1, this change of grading forces us to change the sign in front of all
exterior derivatives d −→ −d. With this understanding, (127) and (129) lead to

B̄ ′

i = B̄i + dĒi (231)

Ā′

i j = Āi j − Ē j + Ēi + dāi j (232)

ln ḡ′

jkl = ln ḡi jk + āi j + ā jk + āki . (233)

The two first rules can be read off, of course, directly from the definition of q̄ as well.
The last transformation rule (233) may appear surprising, however, given that q̄ annihilates all cocycle data

(λi j , gi jk); yet it is required to keep (229) invariant. It can be derived as follows: if we want to compare the values of
a group-valued function g(x) at two different points on x, y ∈ X we have to parallel transport the group element from
one point to the other covariantly to be able to perform the comparison. The difference is then given precisely by the
combinatorial derivative m(x, y)(g(y))g(x)−1

= δ̃
(0)
m g(x, y).

The same is true of comparing the values of the group element in different points x, ξ on the universal gerbe
G on the same orbit of the action of the symmetry group ξ ∈ Ĝ · x . As the group element gi jk is constant
q̄gi jk(x, ξ) = δ̃(0)g(x, ξ) = 1 in these transformations, we have gi jk(ξ) = gi jk(x). Nevertheless, the frame in G
changes along the way due to the presence of the curvature of the connection µi (x, ξ) = −ci (x) so that

g′

i jk g−1
i jk = µi (x, ξ)(gi jk(ξ))g−1

i jk(x) (234)

= δ̃(0)
µ (gi jk)(x, ξ) (235)

= −ci (gi jk)g
−1
i jk . (236)

The part of the symmetry group that is responsible for this change is clearly the group of local gauge transformations
Gi ⊂ Ĝ. As discussed in Section 4.2, the (locally defined) covariant exterior derivative q̄H on the base space G/Gi can
be obtained from q̄ formally by setting ci = 0. (Note that the fields ηi j and bi j that caused trouble in Section 5.1.1
should here be set to trivial values.) This means that on this base space gi jk is covariantly constant q̄Hgi jk = 0.
The extra terms in (233) appear therefore as a consequence of eliminating the non-Abelian symmetry Gi ⊂ Ĝ, and
restricting to basic cohomology on G/Gi .

The Abelian part transforms then

ln ḡ′

i jk = ln det −ci (gi jk) (237)

= ln ḡi jk + ln det[−ci , gi jk] (238)

= ln ḡi jk + tri [−ci , gi jk] (239)

≈ ln ḡ′

i jk + ∂λāi j . (240)

We have used at (239) the fact that ci is really a one-form, and at (240) the constraint C1
i jk ≈ 0. Similarly, under

φ̄i := triφi ,

Ē ′

i = Ēi + dφ̄i (241)

ā′

i j = āi j + φ̄ j − φ̄i . (242)

There are two obvious candidates for observables, but both fail to be BRST-closed unless we impose conditions on
ᾱi and η̄i j .

• The three-form ωi . It fails to be closed by q̄ω̄i = dᾱi .
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• Given a triangulation with sides s, edges e and vertices v of a three-dimensional surface M , we can define the
holonomy [28]

hol
[B̄i , Āi j ,ḡ

−1
i jk ]

=

∑
s⊂M

∫
s

B̄s +

∑
e⊂∂s

∫
e

Āes +

∑
v∈∂e

ln ḡ−1
ves (243)

which transforms by the holonomy

hol
[Ēi ,āi j ]

=

∑
e⊂∂ M

∫
e

Ēe −

∑
v∈∂e

āve (244)

under Abelian symmetries, but picks up the extra piece hol[ᾱi ,η̄i j ,1] under non-Abelian symmetries. The former
transformation vanishes on closed surfaces ∂ M = 0 whereas the latter does not.

8. Discussion

We have proposed two equivalent constructions for a nilpotent BRST operator q̄ and q that both generate
infinitesimal symmetries of a non-Abelian gerbe, though on differently-graded differential forms. For this it was
crucial to arrange the cocycle conditions of [2] in two categories:

• The constraints that the gauge potentials in connection data satisfy;
• The Bianchi identities that the curvature triple satisfy on-shell.

This was possible, as the curvature triple turned out to be completely determined once the connection data was
given.

This is exactly what is needed for defining a path integral measure in quantising the theory as well: the measure
can now be easily written down by integrating over all free fields (connection data, affine data, Lagrange multipliers)
and imposing the constraints with the help of a gauge fermion, such as (172). Having thus defined the measure, we are
nevertheless still lacking a local invariant action principle that would lead to a finite path integral, and well-defined
correlators for observables.

It would now be interesting to determine the BRST cohomology in terms of functionals composed of fields living
on the gerbe. Standard methods in QFT do not seem to be able to catch the special features associated with the crossed
module G −→ Aut G but tend to collapse it to an Abelian ZG gerbe. There are indeed three crucial differences to
traditional Topological Quantum Field Theory:

• Traces of commutators such as tri [mi , Bi ] do not vanish, unless both operators are group-valued;
• Traces of differential forms are invariant polynomials only in the sub-sector of the theory where ϕi is in the image

of ι, i.e. it is an inner automorphism;
• Locally invariant polynomials are not necessarily globally invariant, if they involve either ηi j or bi j .

The BRST algebra we have found is not affected directly by any of these phenomena. However, it is precisely these
features that are sensitive to the effects of the outer part of the automorphism group Out G, and are likely to make it
possible to recover some of the structure of the underlying cohomology of the gerbe H1(G).

In standard Yang–Mills theory, gauge invariant observables were easily identified as elements of the basic complex,
and the BRST operator turned out to be the associated covariant derivative. This structure is repeated here only outside
double intersections. On double intersections the action of the horizontal BRST operator, e.g. on ηi j , contains extra
pieces that do not have the interpretation as a curvature. If one nevertheless restricts to configurations where the naı̈ve

curvature is fully covariant
λi j

(ϕ j + ιφ j ) = ϕi + ιφi , the mismatch vanishes.
Neither ci , nor ϕi , nor φi can in general be assumed to extend to an everywhere well-defined object. To keep track

of these mismatches in local gauge structure, we had to introduce the new fields ai j and bi j that were not present in the
original fully decomposed gerbe. At the fixed point locus of the BRST operator it turned out that bi j was essentially
the failure of φi to extend to a global section, and that the constraint B2

i j ≈ 0 then effectively guaranteed – again, only
at the fixed point locus ai j = 0 – that ϕi + ιφi should indeed transform covariantly from one chart to another with λi j .
At this locus we can define basic functionals that are invariant under local gauge transformations (though only under
inner automorphisms), and quotient out consistently the inner part of the local gauge groups Gi .
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The mismatch in ci was measured in terms of ιai j . This field was required in Section 7.3 for realising the Abelian
gerbe’s symmetries consistently. At the fixed point locus we could choose any fixed background value ai j = ãi j ,
though the trivial value ai j = 0 was the one that reproduced the BRST operator of the non-Abelian gerbe. It remains
an interesting problem to understand the significance of these other fixed point loci.

The use of combinatorial differential geometry simplified further certain standard operations in BRST quantisation.
For instance, ghost number grading is easy to implement in terms of combinatorial differential geometry; this led to
insights in the gauge structure that would otherwise be rather difficult to achieve. This became particularly obvious in
the calculation of the constraint algebra, and in extracting the Abelian Čech–de Rham structure.

The present structure differs in fact from direct generalisations of the Čech–de Rham treatment of Abelian gerbes
such as [34] for instance through the presence of δi j . Only setting this part of curvature to zero do we get the familiar
relationship between a jump in the Bi -field and the exterior derivative of a one-form γi j . Furthermore, in the present
considerations the analogue of the Čech coboundary operator ∂λ did not change the grading or the degree of the fields
on which it operated. This is in contrast with the Abelian case, where the connection and the curving of a gerbe fit in a
Čech–de Rham cocycle where the Čech and the de Rham form degree are on equal footing. It was only in discussing
the ghost number assignments of the Lagrange multipliers for the constraints that it seemed reasonable to take the
Čech degree to contribute to the total grading.

Finally, it would be interesting to calculate the cohomology of the BRST operator and to compare it to the
cohomology of the underlying gerbe. Also, a non-trivial action principle for path integral quantisation is still lacking.
The results presented here will hopefully open doors for making use of these structures more directly in String and
Quantum Field Theory, cf. [35]. Possible applications where the rôle of the automorphism group comes to its full
right are situations where local perturbative descriptions of a quantum field theory differ globally by non-perturbative
symmetry operations, e.g. in non-geometric backgrounds of String Theory.
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